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Abstract. This paper investigates the sensorless detection and evaluation of inner oscillations of un-
known test objects mounted on a compliant test bench. The principle of the sensorless analysis is
that test objects are not totally rigid in reality. This means one or more parts of the test objects are
oscillating with different eigenfrequencies compared to their rigid equivalent. By comparing eigen-
frequencies of both (rigid and fault test object) oscillating parts are detectable.

The aim of this experiment is to demonstrate the use of a 6 DOF compliant Stewart platform (al-
ternatively used in a simulation environment) to generate frequency sweeps in all degrees of freedom,
to get a sensorless detection of vibrations in unknown objects. For this purpose only the preexisting
sensors applied for the control of the hexapod should be used.

The detection of loose parts by shaking objects can be done bya complex robotic manipulation
task. Being designed for flexible use by small and medium-sized enterprises, the robotic Stewart
platform (hexapod) will adapt autonomously to different test objects leading to a highly flexible robot.

Introduction

Countless everyday life products such as electronic equipment or complex parts of the automobile
industry suffer from mechanical strain like vibration or shock. The product design has to take all
these stress factors into account to guarantee the full function of a product during shipping and final
use. It is indispensable to test and measure all these stressfactors beforehand. Usually these sorts
of vibration tests are carried out on special vibrating units or shaking platforms. Electric shakers
are being used mainly for higher vibration frequencies in one dimension. To test for more complex
movements, hydraulic multi axes motion units are commonly used, each custom built for a specific
vibration pattern. To overcome this drawback one could use aStewart platform instead, which is
capable of complex movements in all 6 degrees of freedom and is easy to reconfigure. If a different
pattern is needed one has only to change the trajectory of thehexapod.

Design

In general a hexapod consists of a base and a moving plate connected by 6 actuators that are capable
of generating push and pull forces [4]. A recent realization at FerRobotics Compliant Robot Technol-
ogy GmbH from Linz (Austria) uses pneumatic muscles, which are only able to produce contraction
forces, thus it would not be possible to apply a load. To compensate this, a centered spring for expan-
sion forces is integrated in the design of the muscle hexapod[7]. The spring is highly nonlinear and
not well specified. But the given design is light weight, easy to transport and environmentally safe.
The aim of the project is to determine if a test load put on the hexapod changes in behavior i.e. to
sens if something gets loose or even breaks without additional sensors. The test load has to undergo a
specific trajectory, following high accelerations and extensive vibrations. Given all these constraints



Fig. 1: Picture of the hexapod layout with test load

it should be possible to observe a change in the load structure by using the preexisting sensors applied
for the control of the hexapod. It is crucial to derive a perfect mathematical model of the hexapod to
accomplish this. The proposed load model consists of two interconnected bodies. This connection is
modeled by a damped spring described by a stiffness matrixK ∈ R

6,6 and a corresponding damping
matrix.

Kinematics

In opposite to serial robots, the inverse kinematics for parallel robots can be calculated rather easily,
whereas the forward kinematics is more difficult, see [2], [8] and [9].

Inverse Kinematics The inverse kinematics calculates the length of each hexapod leg starting
with the known vectorrOP and the orientationAIK . Following the closed vector loop in Fig.2, each
length can be calculated to

I li = IrOP +AIK(Kbi − KrAP )− Iai, (1)

li =
√

I l
T
i I li i = 1..6. (2)

VectorIrOP is the desired position of point P the TCP (Tool Center Point) and Kbi andIai are given
by the design of the robot. The rotation matrix is calculatedby using Cardan angles to

AIK = AT
KI = (AγAβAα)

T . (3)

The inverse kinematics can be calculated with this known information.
Forward Kinematics The position and orientation of point P (TCP) is calculated depending on

the robots leg lengthli. This is, however, hard to accomplish in an analytical way, thus a numerical
solution is preferred for the real time computation. A set ofconstraint equationsφi including the
inverse kinematics
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Fig. 2: Layout of a hexapod legli

φ =
(
φ1 .. φ6

)T
, φi = li|q(n) − li,d = 0, i = 1..6, (4)

whereli,d is the set point of legi leads to the following iteration scheme (Newton-Raphson)

q(n+1) = q(n) − φ′|
−1
q(n) φ|q(n)︸ ︷︷ ︸
δ

(n)

. (5)

The new solution of the(n+ 1)th iteration isq(n+1) with the Jacobianφ′ = ∂φ/∂q andδ represents
the Newton direction. Due to minimal change in position fromone to another step, the starting position
of every step is very close to the solution and only 2 iterations per cycle are necessary to obtain a
satisfying result.

Dynamics

The dynamical model is derived using the Projection Equation, see [3] for details. The minimal
coordinates for the kinematic and dynamic model of the robotare described by the vectorqT =
(x y z α β γ), which represents the tool center point (TCP). The vectorrTOP = (x y z) shows the
position and vectorϕT

OP = (α β γ) the according orientation in Cardan angles.
The linear momentump = m vc and angular momentumL = J ωc are projected into the

minimal space (minimal velocitieṡq) via the corresponding Jacobian

N∑

i=1

((
∂Rvc

∂q̇

)T (
∂Rωc

∂q̇

)T
)(

Rṗ+R ω̃IR Rp−R f e

RL̇+R ω̃IR RL−R Me

)

i

= Q, (6)

The translational velocityvc as well as the rotational velocity of the center of gravityωc can be
inserted in arbitrary coordinate systemsR. In contrast toωc, ωIR is the angular velocity of the used
reference system. The matrixJ is the inertial tensor, whilẽω p characterizes the vector product
ω×p. f ei andMe

i are the impressed forces and moments acting on theith body. To obtain the actuator
(muscle) forces the principle of virtual work is used



δW = δqTQ =
∑

δ Ir
T
i IFi =

∑
δqT

(
∂Iri
∂q

)T

IFi, (7)

with

IFi = Fi
I li

‖ I li‖
, (8)

whereFi is the force of theith muscle, whileI li/‖ I li‖ represents the normalized direction, see Eq.1.
The center spring force is calculated by the potential function

V =
1

2
qTKq, (9)

using the stiffness matrixK inserted to the equation of motion. Using this potential as part of the
generalized force results in

Q = −

(
∂V

∂q

)T

= −Kq. (10)

The load model consists of two separate bodies which have their center of gravity in points P and
B. The first body P is connected with the plate and has no relative movement. The second body
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Fig. 3: Load model

is connected by a stiffness matrixKB ∈ R
6,6 to the first body. This stiffness matrix is changed

during testing. At the beginning of the test parts P and B are connected stiffly, one can say they act
as one compact mass. After a while something gets loose and some entries of the stiffness matrix
change to describe the loose part. Depending on the desired load model only specific entries can
change. To address boundary conditions the matrix entries can change depending on the state vector
position and orientation of body B. To implement the relativemovement between P and B a second
independent body is added to the equation of motion Eq.6 and thus the dimension ofq doubles to
qT = (x y z α β γ u v w ϑ ρ ϕ). WhererTPB = (u v w) represents the position vector from
P to B andγT

PB = (ϑ ρ ϕ) the Cardan orientation fromK- to B-system. To get a more realistic



behavior of body B, a damping function is added to the equationof motion Eq.6. It is derived by the
Rayleigh function, [3] as

RB =
1

2

(
dt,xy

(
u̇2 + v̇2

)
+ dt,zẇ

2 + dr,xy

(
ϑ̇2 + ρ̇2

)
+ dr,zϕ̇

2
)

(11)

to

Q = −

(
∂RB

∂q̇

)T

. (12)

By using Eq.6 - Eq.12one can obtain the overall equation of motion as follows

M (q) q̈+ g (q, q̇) +Kq = B (q)u, (13)

using the6 muscle forcesu =
(
F1 .. F6

)T
as input. To calculate the inverse dynamics one

can multiply the equation of motion Eq.12 with B(q)−1 to get the control variablesu. There are no
singular solutions (singular matrixB) possible for this transformation due to the mechanical design.

Control

The control design is done in Matlab Simulink along with the code generation for the target system
a dSpace control board. All motion profiles are predefined andtunable with the Control Desk experi-
ment software. The communication between the dSpace systemand the hexapod hardware is done via
3 CAN interfaces, each controlling 2 muscles. The CAN interface speed is 1Mbit/s and the cycle time
for the controller is 1ms. For the test environment two control schemes are used, a position controller
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Fig. 4: Control concept for the hexapod

and a pressure controller, see Fig.4. The position controller is a feed forward (inverse dynamics)
with PID control law, and the pressure controller is a PID controller with lookup table to compensate
for valve non-linearities. Each leg of the hexapod is drivenby pneumatic muscles from FESTO. The



muscle has a non-linear activation characteristic that is compensated by a mathematical model [6].
This model depends on the actual pressurep of the muscle and the contraction level

hi =
li
l0
100%, (14)

and can be approximated to

Fi =
4∑

j=0

(
ajh

j
i

)
pi +

7∑

k=0

(
bkh

k
i

)
. (15)

The pressure control uses mass flow valves and therefore a compensation of the mass flow charac-
teristics together with a PID control law are used. To implement the control laws for position and
pressure the following sensors,

• position sensor to measure the length of each leg and therefore the contraction of the muscle,

• pressure sensor for the actual pressure of the muscle,

and actuators,

• FESTO pneumatic muscles with

• mass flow valves,

are used.

Experiment

The experimental implementation and verification using a special designed test mass. It emulates a test
object on the hexapod with a mass of 20 kg (mass P), and a secondvibrating mass B (500g), attached
to it via a spring (flexible beam for the experiment). This mass should be identified by measuring
the hexapod position and muscle pressure. For all configurations a spring (steel beam) of dimension
40x3mm with different lengths was used. The maximum spring length is 400mm. The measurements
were performed in 3 different configurations.

In configuration 1 the vibrating spring/mass system is tunedto an eigenfrequency of 11 Hz and
the mass of 500g is positioned in the center of the hexapod. Inconfiguration 2 the same spring length
is used with mass B positioned on the left corner of the hexapod (positive x direction). At last the
spring (beam) length is doubled, resulting in a vibration of6Hz (configuration 3).

The hexapod vibrates vertically (directionz) sweeping slowly from 0 to 18 Hz over a time of 90s.
The FFT analysis of the vertical positionz, Fig. 5 shows that the Stewart platform oscillates more due
to resonance at eigenfrequencies of mass B (6, 11 Hz). Comparing each configuration to configuration
0 one can see an additional oscillation and the vibrating mass is clearly identified by this additional
peak.



0 5 10 15 20 25 30
0

1

2

3

4

5
x 10

−5 Single−Sided Amplitude Spectrum of z(t)

Frequency (Hz)

|z
(f

)|

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5 Single−Sided Amplitude Spectrum of z(t)

Frequency (Hz)

|z
(f

)|

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5Single−Sided Amplitude Spectrum of z(t)

Frequency (Hz)

|z
(f

)|

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5 Single−Sided Amplitude Spectrum of z(t)

Frequency (Hz)

|z
(f

)|

Fig. 5: FFT analysis of positionz (upper-left: no loose part config. 0, upper-right: loose part config.
1, lower-left: loose part config. 2, lower-right: loose partconfig. 3)
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