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Abstract. This paper investigates the sensorless detection andagiealiof inner oscillations of un-
known test objects mounted on a compliant test bench. Thneiple of the sensorless analysis is
that test objects are not totally rigid in reality. This meame or more parts of the test objects are
oscillating with different eigenfrequencies comparedheirt rigid equivalent. By comparing eigen-
frequencies of both (rigid and fault test object) oscitigtparts are detectable.

The aim of this experiment is to demonstrate the use of a 6 DiDkptiant Stewart platform (al-
ternatively used in a simulation environment) to genenaguency sweeps in all degrees of freedom,
to get a sensorless detection of vibrations in unknown e®jéor this purpose only the preexisting
sensors applied for the control of the hexapod should be used

The detection of loose parts by shaking objects can be doredmynplex robotic manipulation
task. Being designed for flexible use by small and mediumdseagterprises, the robotic Stewart
platform (hexapod) will adapt autonomously to differerstt@bjects leading to a highly flexible robot.

Introduction

Countless everyday life products such as electronic equiparecomplex parts of the automobile

industry suffer from mechanical strain like vibration orosk. The product design has to take all
these stress factors into account to guarantee the fultibtmof a product during shipping and final

use. It is indispensable to test and measure all these $tretess beforehand. Usually these sorts
of vibration tests are carried out on special vibrating simit shaking platforms. Electric shakers
are being used mainly for higher vibration frequencies ia dmension. To test for more complex
movements, hydraulic multi axes motion units are commoskydy each custom built for a specific
vibration pattern. To overcome this drawback one could uStesvart platform instead, which is

capable of complex movements in all 6 degrees of freedomsgdsy to reconfigure. If a different

pattern is needed one has only to change the trajectory dietkepod.

Design

In general a hexapod consists of a base and a moving platecaby 6 actuators that are capable
of generating push and pull force§ [A recent realization at FerRobotics Compliant Robot Technol
ogy GmbH from Linz (Austria) uses pneumatic muscles, whiehamly able to produce contraction
forces, thus it would not be possible to apply a load. To camspte this, a centered spring for expan-
sion forces is integrated in the design of the muscle hex§fod he spring is highly nonlinear and
not well specified. But the given design is light weight, easyréansport and environmentally safe.
The aim of the project is to determine if a test load put on teeapod changes in behavior i.e. to
sens if something gets loose or even breaks without additsensors. The test load has to undergo a
specific trajectory, following high accelerations and estee vibrations. Given all these constraints



Fig. 1: Picture of the hexapod layout with test load

it should be possible to observe a change in the load steibiuusing the preexisting sensors applied
for the control of the hexapod. It is crucial to derive a perf@athematical model of the hexapod to
accomplish this. The proposed load model consists of twaréonnected bodies. This connection is
modeled by a damped spring described by a stiffness mitrixR%¢ and a corresponding damping
matrix.

Kinematics

In opposite to serial robots, the inverse kinematics foalparrobots can be calculated rather easily,
whereas the forward kinematics is more difficult, sBe[[8] and [9].

Inver se Kinematics The inverse kinematics calculates the length of each hekéggpstarting
with the known vectorp and the orientatiod ;. Following the closed vector loop in Fi@, each
length can be calculated to

i = rop+ Aix(xkbi — krap) — 1, (1)

Vector rpp is the desired position of point P the TCP (Tool Center Poind) @b, and;a; are given
by the design of the robot. The rotation matrix is calculdigdising Cardan angles to

A = AT, = (A AzA,). (3)

The inverse kinematics can be calculated with this knowormftion.

Forward Kinematics The position and orientation of point P (TCP) is calculatepes&ling on
the robots leg length. This is, however, hard to accomplish in an analytical whysta numerical
solution is preferred for the real time computation. A setohstraint equations; including the
inverse kinematics



Fig. 2: Layout of a hexapod Idg

d=(6 . &), ¢i=1llgw —la=0, i=1.6 (4)

wherel; 4 is the set point of leg leads to the following iteration scheme (Newton-Raphson)

n n -1
q" ) =q" = @' o Dy - (5)
——————

5(71)

The new solution of thén + 1)th iteration isq™*") with the Jacobia’ = d¢/0q andé represents
the Newton direction. Due to minimal change in position frome to another step, the starting position
of every step is very close to the solution and only 2 iteretiper cycle are necessary to obtain a
satisfying result.

Dynamics

The dynamical model is derived using the Projection Equatgze 8] for details. The minimal
coordinates for the kinematic and dynamic model of the ravetdescribed by the vectef =
(z y z a B ), which represents the tool center point (TCP). The veter= (z y z) shows the
position and vectop), = (« 3 ) the according orientation in Cardan angles.

The linear momentunp = m v, and angular momenturh = J w, are projected into the
minimal space (minimal velocitie$) via the corresponding Jacobian

i <8RVC>T (3ch)T ( R.I') +rwWir rRP —Rrf° ) _q ®)
Jq Jq rRL+rwir RL—rM° /. ’

=1

The translational velocity,. as well as the rotational velocity of the center of grauity can be
inserted in arbitrary coordinate syste®sIn contrast tav,, w;r is the angular velocity of the used
reference system. The matrikis the inertial tensor, whiles p characterizes the vector product
w x p. f£ andM¢ are the impressed forces and moments acting oftltH®ody. To obtain the actuator
(muscle) forces the principle of virtual work is used
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1,
B =F (8)
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whereF; is the force of theth muscle, whilgl,/|| ;1;|| represents the normalized direction, se€lEq.
The center spring force is calculated by the potential fionct

1
V= §qTKq, 9)

using the stiffness matriK inserted to the equation of motion. Using this potential ad pf the
generalized force results in

av\"
dq

The load model consists of two separate bodies which hawedéeter of gravity in points P and

B. The first body P is connected with the plate and has no relatievement. The second body

Fig. 3: Load model

is connected by a stiffness matidkz € R%% to the first body. This stiffness matrix is changed
during testing. At the beginning of the test parts P and B armected stiffly, one can say they act
as one compact mass. After a while something gets loose and satries of the stiffness matrix
change to describe the loose part. Depending on the desiagldrhodel only specific entries can
change. To address boundary conditions the matrix entaleslcange depending on the state vector
position and orientation of body B. To implement the relativevement between P and B a second
independent body is added to the equation of motioré Bqd thus the dimension ef doubles to

gl =(xyzaByuvwdpyp).WhererL, = (u v w) represents the position vector from
P to B andyL, = (¥ p ¢) the Cardan orientation fronk - to B-system. To get a more realistic



behavior of body B, a damping function is added to the equatfonotion Eg6. It is derived by the
Rayleigh function, 3] as

Rp = % (dt,my (0% + 02) + dy0* + dy (192 + p2> + d,‘,ngz) (11)
to
T
By using Eg6 - Eq.12 one can obtain the overall equation of motion as follows
M(q)q+g(q,q) + Kq=B(q)u, (13)
using the6 muscle forceaa = ( .. Fg )T as input. To calculate the inverse dynamics one

can multiply the equation of motion EXR with B(q)~! to get the control variables. There are no
singular solutions (singular matr®) possible for this transformation due to the mechanicaigtes

Control

The control design is done in Matlab Simulink along with tloele generation for the target system
a dSpace control board. All motion profiles are predefinedtandble with the Control Desk experi-
ment software. The communication between the dSpace systditne hexapod hardware is done via
3 CAN interfaces, each controlling 2 muscles. The CAN intexfgigeed is 1Mbit/s and the cycle time
for the controller is 1ms. For the test environment two cargchemes are used, a position controller
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Fig. 4. Control concept for the hexapod

and a pressure controller, see F@.The position controller is a feed forward (inverse dynasjic
with PID control law, and the pressure controller is a PIDtoalier with lookup table to compensate
for valve non-linearities. Each leg of the hexapod is drieggrpneumatic muscles from FESTO. The



muscle has a non-linear activation characteristic thabmpensated by a mathematical modgl [
This model depends on the actual presguoéthe muscle and the contraction level
l;
h; = l—lOO%, (14)
0

and can be approximated to

4 7
Fi=> (a;h])pi+>_ (bchk) . (15)
k=0

Jj=0

The pressure control uses mass flow valves and therefore permation of the mass flow charac-
teristics together with a PID control law are used. To immeaithe control laws for position and
pressure the following sensors,

e position sensor to measure the length of each leg and tmerdsfe contraction of the muscle,
e pressure sensor for the actual pressure of the muscle,
and actuators,
e FESTO pneumatic muscles with
e mass flow valves,

are used.

Experiment

The experimental implementation and verification usingex&d designed test mass. It emulates a test
object on the hexapod with a mass of 20 kg (mass P), and a seitwatng mass B (500g), attached
to it via a spring (flexible beam for the experiment). This mmabould be identified by measuring
the hexapod position and muscle pressure. For all confignsag spring (steel beam) of dimension
40x3mm with different lengths was used. The maximum sprmgth is 400mm. The measurements
were performed in 3 different configurations.

In configuration 1 the vibrating spring/mass system is tuioegin eigenfrequency of 11 Hz and
the mass of 500g is positioned in the center of the hexaparbrifiguration 2 the same spring length
is used with mass B positioned on the left corner of the heddpositive x direction). At last the
spring (beam) length is doubled, resulting in a vibratiolldk (configuration 3).

The hexapod vibrates vertically (directiehsweeping slowly from 0 to 18 Hz over a time of 90s.
The FFT analysis of the vertical positienFig. 5 shows that the Stewart platform oscillates more due
to resonance at eigenfrequencies of mass B (6, 11 Hz). Comgpeeich configuration to configuration
0 one can see an additional oscillation and the vibratingsnsaslearly identified by this additional
peak.
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Fig. 5: FFT analysis of position (upper-left: no loose part config. O, upper-right: loose panfig.
1, lower-left: loose part config. 2, lower-right: loose pewnfig. 3)
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