Hybrid 3-D Endoscopy The best of both worlds

Sven Haase 11.04.2013 Pattern Recognition Lab (CS 5)

TECHNISCHE FAKULTÄT

- Minimally Invasive Procedures
- Time-of-Flight Technology
- Intrinsic/Extrinsic Calibration
- Hybrid Preprocessing
- First Medical Applications

- Minimally Invasive Procedures
- Time-of-Flight Technology
- Intrinsic/Extrinsic Calibration
- Hybrid Preprocessing
- First Medical Applications

Motivation

Drawbacks:

- Narrow field of view
- Lack of orientation
- Lack of intuitive navigation

wikipedia.org

Motivation

Drawbacks:

- Narrow field of view
- Lack of orientation
- Lack of intuitive navigation

Augment color data with metric range data

wikipedia.org

- Minimally Invasive Procedures
- Time-of-Flight Technology
- Intrinsic/Extrinsic Calibration
- Hybrid Preprocessing
- First Medical Applications

Time-of-Flight Devices

	CamCube 3	Camboard Nano	DS325
Resolution [px]	200×200	160×120	320×240
Frame rate [Hz]	40	90	60
Range [cm]	30-700	5-50	10-100
FoV [°]	40×40	90×68	74×58
Noise level [mm]	± 6	± 10	± 10
Price [€]	~8000	~500	~180

Time-of-Flight Technology

Why Time-of-Flight:

- Very cheap to manufacture
- Independent of texture information
- Constant spatial resolution

Drawback:

- Low resolution
- Low signal-to-noise ratio

Time-of-Flight Technology

Why Time-of-Flight:

- Very cheap to manufacture
- Independent of texture information
- Constant spatial resolution

Drawback:

- Low resolution
- Low signal-to-noise ratio

Approach:

Hybrid Time-of-Flight/RGB Imaging

- Minimally Invasive Procedures
- Time-of-Flight Technology
- Intrinsic/Extrinsic Calibration
- Hybrid Preprocessing
- First Medical Applications

Challenge for Time-of-Flight:

- Inhomogeneous illumination
- Very low resolution
- \rightarrow Automatic detection algorithms fail

Challenge for Time-of-Flight:

- Inhomogeneous illumination
- Very low resolution
- \rightarrow Automatic detection algorithms fail

Approach:

- Preprocessing required
- Embedded barcodes
- → Automatic detection & many corners visible

Challenge for Time-of-Flight:

- Inhomogeneous illumination
- Very low resolution
- \rightarrow Automatic detection algorithms fail

Approach:

- Preprocessing required
- Embedded barcodes
- → Automatic detection & many corners visible

- Minimally Invasive Procedures
- Time-of-Flight Technology
- Intrinsic/Extrinsic Calibration
- Hybrid Preprocessing
- First Medical Applications

Hybrid Super-Resolution

- Simultaneously increase image quality and spatial resolution
- Exploit small movements of the sensor
- Register all images 1.
- 2. Set up a generative image model

$$y^{(k)} = W^{(k)}x + \epsilon^{(k)}$$

 $W^{(k)}$: System matrix of the k^{th} frame

3. Solve the equation system

Hybrid Super-Resolution

Removal of Specular Reflections

Removal of Specular Reflections

Removal of Specular Reflections

- 1. Exploit two different perspectives
- 2. Detect all specular reflections
- 3. Calculate 2-D features in both images (SURF)
- 4. Estimate patch wise for each Reflection an affine transformation
- 5. Replace the specular regions in one image by non specular regions of the other

Ground truth

Raw data

Interpolation

Out approach

- Minimally Invasive Procedures
- Time-of-Flight Technology
- Intrinsic/Extrinsic Calibration
- Hybrid Preprocessing
- First Medical Applications

Tool Localization

- Robust algorithm using color and range information^[5]
- Based on a Hough transformation we locate the tool tip in 3-D

[5] "Laparoscopic Instrument Localization using a 3-D Time-of-Flight/RGB Endoscope", WACV 2013, Haase et al.

Range image

Color image

Tool Localization

- Robust localization in challenging scenarios
- Intersection, Blood, Occlusion

Situs Reconstruction (Time-of-Flight Satellite Cameras)

- Address the narrow field of view
- Fuse different views into a big reconstruction of the whole operation situs
- \rightarrow Allow a better initial orientation within the human body

Situs Reconstruction (Time-of-Flight Satellite Cameras)

Situs Reconstruction (Time-of-Flight Satellite Cameras)

Thank you

